Box-Behnken Design Optimization Process of Electrospinning for Fabrication PLA/PVA Nanofibers
DOI:
https://doi.org/10.69855/science.v2i3.270Keywords:
ANOVA, BBD, Electrospinning, Nanofiber, OptimizingAbstract
The optimization of PLA/PVA nanofibers has been successfully performed using the Box-Behnken design method to produce nanofibers with small diameters. The fabrication process of the nanofibers was conducted using electrospinning. The electrospinning process parameters included PLA solution concentration, voltage, and flow rate. The optimal conditions for producing the nanofibers were found in sample N1, with variations of PLA solution at 9%, voltage at 14 kV, and flow rate at 16 kV, resulting in small and uniform nanofibers. The smallest fiber diameter achieved was 152.67 nm, which is quite close to the Box-Behnken predicted value of 144.45 nm. Statistical testing was conducted using analysis of variance (ANOVA), which indicated a p-value greater than 0.03 for the effect of the flow rate. This demonstrates that the flow rate has a significant influence on the diameter size. These results indicate that the Box-Behnken design can be an important tool for optimizing processes in electrospinning.
References
Abdulhussain, R., Adebisi, A., Conway, B. R., & Asare-Addo, K. (2023). Electrospun nanofibers: Exploring process parameters, polymer selection, and recent applications in pharmaceuticals and drug delivery. Journal of Drug Delivery Science and Technology, 90, 105156. https://doi.org/https://doi.org/10.1016/j.jddst.2023.105156
Ali, R., Mehta, P., Kyriaki Monou, P., Arshad, M. S., Panteris, E., Rasekh, M., Singh, N., Qutachi, O., Wilson, P., Tzetzis, D., Chang, M.-W., Fatouros, D. G., & Ahmad, Z. (2020). Electrospinning/electrospraying coatings for metal microneedles: A design of experiments (DOE) and quality by design (QbD) approach. European Journal of Pharmaceutics and Biopharmaceutics, 156, 20–39. https://doi.org/https://doi.org/10.1016/j.ejpb.2020.08.023
Anindyajati, A., Boughton, P., & Ruys, A. J. (2018). Modelling and Optimization of Polycaprolactone Ultrafine-Fibres Electrospinning Process Using Response Surface Methodology. Materials, 11(3). https://doi.org/10.3390/ma11030441
Dhakate, S. R., Gupta, A., Chaudhari, A., Tawale, J., & Mathur, R. B. (2011). Morphology and thermal properties of PAN copolymer based electrospun nanofibers. Synthetic Metals, 161(5), 411–419. https://doi.org/https://doi.org/10.1016/j.synthmet.2010.12.019
Edikresnha, D., Suciati, T., & Khairurrijal, K. (2021). Preliminary study of composite fibers polyvinylpyrrolidone/cellulose acetate loaded by garlic extract by means of electrospinning method. Materials Today: Proceedings, 44, A1–A4. https://doi.org/https://doi.org/10.1016/j.matpr.2021.04.344
Gönen, S. Ö., Erol Taygun, M., & Küçükbayrak, S. (2016). Evaluation of the factors influencing the resultant diameter of the electrospun gelatin/sodium alginate nanofibers via Box–Behnken design. Materials Science and Engineering: C, 58, 709–723. https://doi.org/https://doi.org/10.1016/j.msec.2015.09.024
Haider, A., Haider, S., & Kang, I. K. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8), 1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015
Huan, S., Liu, G., Han, G., Cheng, W., Fu, Z., Wu, Q., & Wang, Q. (2015). Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic Properties of Electrospun Polystyrene Fibers. Materials, 8(5), 2718–2734. https://doi.org/10.3390/ma8052718
Kang, Z., Zhang, D., Li, T., Liu, X., & Song, X. (2021). Polydopamine-modified SnO2 nanofiber composite coated QCM gas sensor for high-performance formaldehyde sensing. Sensors and Actuators B: Chemical, 345, 130299. https://doi.org/https://doi.org/10.1016/j.snb.2021.130299
Khaleel, M. R., Hashim, F. S., & Alkhayatt, A. H. O. (2024). Preparation, characterization, and the antimicrobial activity of PVA-PVP/ZnO nanofiber films via indigenous electrospinning setup. Journal of Molecular Structure, 1310, 138325. https://doi.org/https://doi.org/10.1016/j.molstruc.2024.138325
Latiffah, E., Agung, B. H., Hapidin, D. A., & Khairurrijal, K. (2022). Fabrication of Polyvinylpyrrolidone (PVP) Nanofibrous Membranes using Mushroom-Spinneret Needleless Electrospinning. Journal of Physics: Conference Series, 2243(1), 12101. https://doi.org/10.1088/1742-6596/2243/1/012101
Li, N., & Martin, C. R. (2001). A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis. Journal of The Electrochemical Society, 148(2), A164. https://doi.org/10.1149/1.1342167
Okutan, N., Terzi, P., & Altay, F. (2014). Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids, 39, 19–26. https://doi.org/https://doi.org/10.1016/j.foodhyd.2013.12.022
Partheniadis, I., Nikolakakis, I., Laidmäe, I., & Heinämäki, J. (2020). A mini-review: Needleless electrospinning of nanofibers for pharmaceutical and biomedical applications. Processes, 8(6). https://doi.org/10.3390/PR8060673
Ranjbar-Mohammadi, M., Shakoori, P., & Arab-Bafrani, Z. (2021). Design and characterization of keratin/PVA-PLA nanofibers containing hybrids of nanofibrillated chitosan/ZnO nanoparticles. International Journal of Biological Macromolecules, 187, 554–565. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.07.160
Ray, S., & Lalman, J. A. (2011). Using the Box–Benkhen design (BBD) to minimize the diameter of electrospun titanium dioxide nanofibers. Chemical Engineering Journal, 169(1), 116–125. https://doi.org/https://doi.org/10.1016/j.cej.2011.02.061
Sarlak, N., Nejad, M. A. F., Shakhesi, S., & Shabani, K. (2012). Effects of electrospinning parameters on titanium dioxide nanofibers diameter and morphology: An investigation by Box–Wilson central composite design (CCD). Chemical Engineering Journal, 210, 410–416. https://doi.org/https://doi.org/10.1016/j.cej.2012.08.087
Sukowati, R., Rohman, Y. M., Agung, B. H., Hapidin, D. A., Damayanti, H., & Khairurrijal, K. (2023). An investigation of the influence of nanofibers morphology on the performance of QCM-based ethanol vapor sensor utilizing polyvinylpyrrolidone nanofibers active layer. Sensors and Actuators B: Chemical, 386, 133708. https://doi.org/https://doi.org/10.1016/j.snb.2023.133708
Tanpichai, S., & Oksman, K. (2016). Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: Mechanical properties and creep recovery. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2016.06.002
Wang, H., Wang, L., Liu, Z., Luo, Y., Kang, Z., & Che, X. (2024). Astragaloside/PVP/PLA nanofiber functional dressing prepared by coaxial electrostatic spinning technology for promoting diabetic wound healing. European Polymer Journal, 210, 112950. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2024.112950
Younes, K., Mouhtady, O., Chaouk, H., Obeid, E., Roufayel, R., Moghrabi, A., & Murshid, N. (2021). The Application of Principal Component Analysis (PCA) for the Optimization of the Conditions of Fabrication of Electrospun Nanofibrous Membrane for Desalination and Ion Removal. Membranes, 11(12). https://doi.org/10.3390/membranes11120979
Zulfi, A., Munir, M. M., Hapidin, D. A., Rajak, A., Edikresnha, D., Iskandar, F., & Khairurrijal, K. (2018). Air filtration media from electrospun waste high-impact polystyrene fiber membrane. Materials Research Express, 5(3), 35049. https://doi.org/10.1088/2053-1591/aab6ef
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yadi Mulyadi Rohman, Dendin Supriadi

This work is licensed under a Creative Commons Attribution 4.0 International License.